Management Math and Formulas

by Susan Davis Allen, MS, RD, CHE

Management Math	Formula	Example
Edible Yield Factor Used to calculate edible yield from produce or meat	Edible portion (EP) \div As purchased (AP)	16 lbs . of broccoli (AP) after cleaning yield 13 lbs . (EP) $13 \div 16=81 \%$ yield
FTE Full-Time Equivalent	One person @ 8 hrs./day x 5 days/ wk. $\times 52 \mathrm{wks} . / \mathrm{yr}$. $=2,080 \mathrm{hrs}$	If you have six employees who work full-time, you have 6 FTEs; if you have 10 employees, two work full-time, two work $3 / 4$ time, and six work $1 / 2$ time, how many FTEs are there? $\begin{aligned} 2 \times 1 \mathrm{FTE} & =2 \times 2,080=4,160 \text { hours } \\ 2 \times .75 \mathrm{FTE} & =1.5 \times 2,080=3,120 \text { hours } \\ 6 \times .5 \mathrm{FTE} & =3 \times 2,080=6,240 \text { hours } \\ \text { Total FTEs } & =6.5 \times 2,080=13,520 \text { hours } \end{aligned}$
Inventory Valuation The value of all of your inventory	Number of purchase units on hand x product price, then added together	In a cooler: 1 bag lettuce $\times \$ 8 / \mathrm{bag}=\$ 8.00$ 10 lbs carrots $\times .39 / \mathrm{lb} .=\$ 3.90$ 25 lbs. onions x .25/lb. = \$6.25 Inventory Valuation $=\$ 18.15$
Productivity Rate Used to measure the productivity of foodservice employees	A measure of work such as trays assembled \div measure of time	14 trays assembled in seven minutes $14 \div 7=2$ minutes/tray
Recipe Cost Used to determine the cost of a standardized recipe	List of ingredients with price per amount of ingredient, added together \div by the recipe yield $=$ price per portion	Recipe: Scrambled Eggs for 12 clients: 18 eggs @ \$1.50/doz. ($\$ 1.50 \div 12=\$.125 /$ egg $)$ $18 \times .125=\$ 2.25$ for 18 eggs 1/4 cup milk @ \$4.00/gal (16 cups/gal and four 1/4 cups/cup) $\$ 4.00 \div 16=\$.25 /$ cup $\div 4=\$.0625$ for 1/4 cup milk Total cost/client = \$2.25 + . 0625 = \$2.31 $\div 12$ = .19/ client
Scaling a Recipe Used when increasing or decreasing the amount a recipe serves	Divide the New yield by the Original yield. Remember it by the fact that ' N ' comes before ' O ' in the alphabet so the formula is always $\mathrm{N} \div \mathrm{O}$ to get the conversion factor. Then multiply the ingredients in the recipe by the conversion factor.	Let's use the Scrambled Eggs above. You want to increase this recipe to serve 50 people. 1. Determine the conversion factor: $50 \div 12=4.167$ 2. Multiply that by each ingredient: 18 eggs $\times 4.167=75$ eggs .25 cup milk $\times 4.167=1$ cup milk Continued...
		Foodservice Management-By Design 501

Management Math and Formulas

Management Math
 Tray Accuracy
 Used to determine the number of errors in assembling trays

Monthly Food Cost

Used to determine food cost for the month

Monthly Food Cost Percent

A percentage used to track food costs and may be used to determine meal prices

Turnover Rate

Used as a measure of stability in the foodservice department

Raw Food Cost (PPD) Per Patient Day

Used as a financial measurement for tracking and benchmarking

Raw Food Cost Per Meal

The cost of the raw ingredients to produce a meal

Meals Per Labor Hour

Used as a measure of productivity and for tracking and benchmarking

Formula

1. Count the total numbers of items on the menu ticket
2. Count the number of errors you discover on one tray
3. Divide the number of errors by the total number of items
4. Record beginning inventory valuation
5. Add total purchases for the month
6. Subtract ending inventory valuation
7. Record the monthly food cost
8. Divide by the sales for the month (or the raw food cost PPD x number of clients)
9. List the number of employees who have left over a defined period of time
10. Divide this by the total number of positions you have
[(Monthly Food Cost \div total days in the month)
\div total clients]
[(Monthly food cost from above \div ((the number of meals served in the month, for example: the client count $\times 3$ meals a day \times (30 days))]

Total meals served \div total hours worked (Note: total meals served includes regular meals plus any catering)

Example

For today's noon meal, there are seven items, including drink and condiments. You discover two errors.
$2 \div 7=.29 \times 100=29 \%$

For the month of June:

1. Inventory valuation as of June 1: $\$ 7,456$
2. Purchases for the month of June: $+\$ 10,914$
3. Subtract ending inventory on the 30th - $\$ 9,002$

Monthly Food Cost: \$9,368

June monthly food cost \$9,368
Sales for the month: $\$ 27,398$
Food cost \% for June:
$\$ 9,368 \div \$ 27,398=.342 \times 100$ or 34.2%

Turnover rate for 2015:

1. 12 employees left the department in 2015
2. The total number of positions is 99
3. $12 \div 99=.12 \times 100=12 \%$

June monthly food cost
$[(\$ 9,368 \div 30$ days $) \div 74$ clients $]=\$ 4.22 /$ day

June monthly food cost:
[\$9,368 $\div((74$ clients $\times 3$ meals $) \times 30$ days $)]=$ Cost Per Meal
$[\$ 9,368 \div((222$ meals $) \times 30$ days $)]=$ Cost Per Meal
$(\$ 9,368 \div 6,660$ meals $)=\$ 1.41$ Per Meal
June meals:

1. Regular meals $=6,660$ meals
2. Catered meals $=154$
3. Total Meals: $6,660+154=6,814$ meals
4. Use a total of 485 labor hours
5. 6,814 total meals $\div 485$ total labor hours $=$ 14 Meals Per Labor Hour
\(\left.\begin{array}{l|l|l}Management Math \& Formula \& Example

\hline Labor Cost Per Meal \& Total labor costs \div total \& Using the example from above for total meals:(6,814)

Served\end{array} \quad $$
\begin{array}{l}\text { Total labor costs for June: } \$ 6,305\end{array}
$$\right]\)| $6,305 \div 6,814=\$ 0.93 /$ meal |
| :--- |

Frequently Used Conversions

How to Calculate Percentages

Liter \rightarrow Ounces Conversions

How Many Meat Portions in a Pound

Calculate the Scoop Size

Cross multiply and divide
June monthly food cost \$9,368
Sales for the month:
\$27,398
Quick conversions to keep in mind

Food cost \% for June:
$\$ 9,368 \$ 27,398=[(9,368 \times 100) \div 27,398]=34.2 \%$
? 100

1 liter $=1,000 \mathrm{cc}$'s $=1,000 \mathrm{ml}$'s
$30 \mathrm{ml}=1 \mathrm{oz}$.
$240 \mathrm{ml}=8 \mathrm{oz}$. $=1 \mathrm{cup}$

1 gallon = 128 oz .
1 gallon $=4$ quarts $=16$ cups
1 quart $=4$ cups $=32 \mathrm{oz}$.
1 cup $=8$ oz.

1 lb . of raw meat $=16 \mathrm{oz}$.
A standard protein portion is 4 oz . raw or 3 oz . cooked
1 lb . of meat = four portions

A \#10 can = 12-13 cups of product
A typical serving is $1 / 2$ cup
A \#10 can = approximately 25-1/2 cup servings

The scoop size is equal to the number of scoops in a quart (32 oz.)
There are eight half-cups in a quart (\#8 scoop)
There are 12 one-third cups in a quart (\#12 scoop)

